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PREFACE 

J 

The problem of the existence of conservation laws was suggested 

to me by  Professor Charles Loewner, who has recently made use of some 

special cases to obtain results of interest in hydrodynamics [3].  The 

question is also of general interest with regard to the physical inter- 

pretation of given systems of partial differential equations. Many 

important systems arising in physics, Maxwell's equations, for instance, 

are indeed in the form of conservation lr.ws. 

I am indebted to Professor Loewner for his patience, advice, and 

friendly encoursgeiient throughout the entile writing of this dissertation, 

to Professor Marcel Hiesz, University of Lund, for his interest in the 

material of Chapter II, and especially to Professor S. S. Chern, University 

of Chicago, who introduced me to many of the methods used in Chapter III. 

This worK h&fl be«i.-i sponsored in part by the Office of Naval Research, 

Contract Nonr 225(11), and Air Force Contract AF l8(600)-6?9. 

July 15, 195U Howard Osborn 
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THE EXISTENCE OF CONSERVATION LAWS 

By 

Howard Osborn 

Introduction 

A  first order quasi-lir.ear homogeneous   partial differential 

equation in the independent variables     x  ,     i = l,...,n    and the 

dependent  variables    u   ,   j  " l,...,p 

is   of the  form 

Ls a  conservation law if it 

(Cl) &£•...•*£ 0 
bx ox 

for some    0      which are functions  of    x = (x j   and u • |u  j, 

If a scalar density   p   =  P (x)     is  fixed on the space of    x,  that is, 

i I A x 
if   a change  of variables     x'   = x'(x)     involves    p     (x')   =   P (x)       —«- 

hx 
where 

(0.1)  as 

is the  Jacobian,  then one may set    0    = p>        and write 

(0.2)        i    (AiULl    • ..,•    ^iU->  ) Sdiv+ -0, 
P ^x1 ^xn P 

which states that the vector t' with components T  is solenoidal 

with respect to the density p. ('The notation div is useful for 

changes in density; for example, if A, is a scalar, then 

div-V = i= divA-V.^ 
Ap    A  ?    y If a metric ds  = tg. .(x)dx dx*- 

1J 

is attached to the space, the vector "V is solenoidal with respect to 

in   p = J det g. the given metric wher 
ij 

is  taken as the scalar density. 

In order to  investigate whether a given equation has the  form 

(0.2),   or  in order to  investigate whether  some  linear combination of 

several equations has   this   form, which is the  purpose  of this  paper, 

L •. • .«g|—i i'W*M 
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it is clearly not necessary to know the density p .  For if one knows 

only that the equation is in the form of a conservation law (0.1), 

then for any density 0  the vector "H* * -z 0 is solenoidal with respect- 

to that density.  Henceforth a density will be introduced only for 

purposes of illustration. 

Conservation laws arise in several ways in the mechanics of 

continuous media.  If a fluid of density P  has the velocity vector 

u - u(x) for x in some closed bounded region R, then Gauss' theorem 

asserts that 

(0.3)      Jj\pd<r    -   JJJdiv   updx, 

6R R      ' 

?.'here u _ is the component of u normal to the boundary   0 R of R.    The 

left-hand side of  (0.3)   is  the variation of the total mass over R. 

This  is  physically clear since ft gives the normal rate of flow throughout 

the entire boundary   OR.     If the flow is  stationary,  then clearly the total 

mass  over any R is conserved,  so that the integrand on the right-hand side 

of  (0.3)   vanishes,  showing that u is solenoidal with respect to P . 

Variational principles   furnish another source of conservation laws. 

Let f be a  function of uJ„ uf, and X , where u^ *-    -2-^-  ,  i - l,...,n, 
1 r x 

j  » l,...,p,  and suppose  that the  integral J _f dx,   for which a stationary 

value  is sought,  is  invariant under a group with fi  parameters.    Then, 

according to a well-known result of Emmy Noether, one can find ^ linear 

combinations  of the  p resulting variational equations which have the form 

of conservation laws   [U ].    As an example,   if f does  not depend explicitly 

on the  independent variables x   ,  then these variables   themselves may be ,'. 

n 
i 

1 
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taken as  parameters.     Indeed,  by appropriate linear combination of 

the  variational equations 

n 
(O.h)       f   • -     Z*     -^r    f   . - 0 

i=l   Ox v 
(j=l,...,p), 

one  finds 

IW1 ^0" 
(0.5)       —|    •...+    -|    - C, (k-l,...,n) 

6x ox 

where 

P 

(0.6)      01 -   S1    f -     £ 
k k j=l uj 

Unfortunately,  the system  (0.5)  is  not necessarily linearly equivalent 

to   (0.U),  for example when n < p. 

Occasionally well-known systems of equations which are not 

customarily derived  from variational  principles  can be written in 

the form of a system of conservation laws.    For example, the equations 

f?t^?x*PUx=° 

(0.7) u,   * uu    * -x V    = 0 t X      O   *x 

I 

Pt • UPX •   4FJX - 0 

of the one-dimensional, non-isentropic,  non-steady flow of an adiabatic 

fluid, where P is the density,  u the velocity,   p the  pressure, and    © 

the adiabatic constant,  can be written in the  form 

VI ' 
I , •ml 
H 

KpMMBf* . 
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Si: 

Ttei 

(0.8) 

Adiv    (1,  u)  - 0 
'     f 

div    (u, u    • £-) 

div    (u    * P        3      2j( p , 
ff -T p » -  • n - p 0. 

If an arbitrary system of first order quasi-linear homogeneous 

partial differential equations  is given,  one might ask if it is 

equivalent in some sense to a system of conservation laws,  or at least 

how many conservation laws can be obtained from it by linear combination, 

as  in the  preceding examples.     This question will be stated more 

specifically in Chapter  I and answered for a small class  of equations 

in Chapter II;   it  is answered in a very general way  in Chapter III. 

Chapter I is of an algebraic  nature,  and reduces the  problem of 

the existence of conservation laws to that of solving an over-determined 

system of linear homogeneous  partial differential equations.    An existence 

theorem is  given for the over-determined system in Chapter II,  under the 

restriction that certain integrability conditions are  satisfied.    For 

the more general  problem solved in Chapter III the question is more 

conveniently stated in terms of exterior differential forms  in order 

that the existence theorem of Gartan and Kahler can easily be applied. 

A brief sketch of the  theory  of systems  of exterior differential forms 

has   been included  for convenience. 

The  principle results of this  investigation suggest that in general 

one should expect systems of partial differential equations to contain 

many more conservation laws than appear on the surface.    For example, 

when n «• 2 and  p = 3 every system in which the coefficients depend 
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exclusively on the unknowns possesses at least a two-parameter family 

of conservation laws. Even more surprising, for a  wide variety of 

cases one can find conservation laws which depend not only on a small 

number of parameters, but also on a certain number of functions of a 

single variable;  in particular, when the integrability conditions of 

Chapter II are satisfied, one may assign p arbitrary functions of one 

variable to obtain infinitely many equivalent systems of conservation 

laws.  In other cases, although certain functions again may be assigned 

arbitrarily, equivalent systems of conservation laws do not exist. 

i 

All definitions will be indicated by underlining new terms as 

they arise, with an accompanying explanation in the text. 

The Einstein summation convention is occasionally used. The 

dummy indices will always be lcwer case Greek letters and the range 

of summation l,...,p. There is no summation over Latin indices except 

when indicated by S  . 

« 
i   •. -*r»«p.)« 



CHAPTER I 

DEFINITIONS AND STATEMENT OF THE PROBLEM 

Si.       Well-determined systems 

This  paper deals with formal properties of a  system of quasi- 

linear homogeneous   first order  partial differential equations 

(1.1) oCki     1}>L - o k • 1,...,m 

-ix'l and unknowns U - (uj|, where in the independent variables x 

*!?•- *f (x,u). 

A system is determined if m *• p and equations (l.l) are linearly 

independent at any given point (x ,u ) in the product space XX U of 

the spaces of x and u. Clearly the determination of a system is 

independent of the coordinates of U since a change of coordinates 

u • u(v) merely turns (1.1) into a system 

• jLtffe1 
k = 1,...,m 

!•• 

*~ Pf "   A r *? $ ! since the matrix ( ?—* j 

is non-singular, the rank of the npx p matrix (fe« ) is the same 

as that of  (<* 1J1) . 

Determined systems exist for which x,he  corresponding Cauchy 

II—W I.-       ' IM) i 

ft. if W 
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problem would be rather unnatural. For example, if n " p • 2 the 

system 

(1.3) 

Jux 

/   &u 

0 

: 

is determined.     Its solution,  u    an arbitrary constant and u    an 

1    2, arbitrary function f(x  ,x ),   is uniquely determined by the unusual 

1 2 12 Cauchy data u    = constant and u    » f(x ,x  ).    Similarly the system 

(1.U) 

can be completely solved merely by assigning the Cauchy data 

1  -1/ 2s       2 flz-2, 2 2        12 
f (x"), where f and f are arbitrary. 

ML, be indeterminates, and for each i let (ol  ) be a 
J 

Let I-   {Jj\ 

p X  p matrix with complex entries,   (i = l,...,n).     Then pathological 

examples  like  (1.3)  and  (l.U)  may be eliminated by requiring that 

(1.5) det   [Z l±«f)t 
i = 1 

be a non-zero form of degree  p in i   .    Any system (1.1)  satisfying 

(1.5)   is called well-determined.    Clearly this  property is  independent 

of the coordinates  in X as well as  in U. 

s 

• •> • w>   wwnii* 
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The 3     may be assigned complex values which vary covariantly 

with coordinate changes  in X =     FOT anv point,  (x   .u ).  the annihilator 
o' o' ' 

of any co-vector (J.) for which the determinant (1.5) vanishes is 

called a characteristic element in X at (x ,u ).  Thus a system is 

well-determined if and only if not every element is characteristic. 

If (1.5) contains a linear factor, the coefficient of} . 

appearing in this factor may be taken as the i  direction number 

oi a characteristic direction in X at (x 9u ).  Geometrically, if 

there exists an (n-2) - parameter family of characteristic elements 

in X at (x ,u ) which have a direction in common, then the direction 
o- o ' 

is characteristic. For n = 2, when p linear factor-" Always exist, 

the preceding definitions coincide, and furthermore, for any characteristic 

direction one can find a linear combination of the equations of the 

system of partial differential equations such that every unknown appearing 

in it is differentiated in the given characteristic direction. For n > 2 

such linear combinations do not necessarily exist. 

S2.  Tangent spaces, equivalence of well-determined systems 

Let (u> • In i xj be a class of differentiable functions 

u of X.  By choosing a set [u_,.„.,u j  of functionally independent 

u's about any given point of X this class becomes a differentiable 

mifold, also denoted by [u> , with the values of u-,...,u as the mar 

local coordinates. VTe note that th_ operator 

3-   *u. 

bx      i • 1 ox SH' is  a linear differential mapping of the class 

L - 
• 

• 
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of all differentiable functions on the manifold |u\ into the complex 
n 

number field, at any given point of X. Since any operation  <f M.      •"•• 

i-1    « 

on luV is also a linear differential mapping, these mappings form a 

vector space, the tangent spare of {-a)   , spanned by —V,...»—*—. Two 

vectors in this space are identical if and only if they furnish t.ie 

same mapping. Clearly the space is of dimension q. 

An alternate definition can be given merely by replacing "the class 

of all differentiable functions on the manifold fuj " by "the class (y\   n 

alone, or even by (iu,...,u j and considering the operators -^-r. This 
bx 

definition has the advantage that it defines a tangent space to the 

class /u} without constructing the corresponding manifold. As an example, 

consider the class [uj of all solutions u of «. "—?•  • 0.  Its tangent 
ixx     1 

space is just the annihilator at any point of the vector (</. ,... ,<* ); 

clearly there is no point in constructing the manifold (uj to discover 

this. 

The tangent space   just defined is distinct from the tangent space 

of U, which is a  p-dimensional space spanned by the mappings -&->j-,... ,-*— 
^u &u 

of all differentiable  functions on the manifold U,  independently of X. 

Let    f(u  ,...,uP)j   =     j(u   ,.„.,uP)  sXj be a class  of  p-tuples of 

functions uJ of X.    Suppose there are q    p-tuples   (u.,...,uih,...,(u,...,uH 

such that the rank of the q* np matrix 

i 

.„ -T—       «•>*•  ll*WMMN4|HPMM i *m*      i ii 14.,'. 
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M 
Ox 

n 

OuP 

to? 

h'} M 
q q 

x n 
ox ox 

is  q;   then the q    p-tuples arc defined to be  independent.  Any operator 
n \ n 

,       i Ox i = l i «• 2 S."^ 
is a linear differential mapping 

of the class  7(u ,.«.,n )j   into  p-tuples of complex numbers,  at any point 

of X, where the  /*'s are arbitrary.    As before,   if there exist exactly q 

independent  p-tuples these maps  form a q-dimensional vector space,  the 

tangent  space of f(u ,... ,u )j . 

Suppose  that   (1.1)   is determined and continuous   in Xx U in a 

k 
neighborhood of (x ,u ). Then the p vectors < <<V ^kl .kn Nkru 

»  p S'"J   1  >"' >  p > > 

k = l,...,p are  independent  in the i\sual sense for each  (x,u)   in the 

neighborhood and span a  p-dimensional subspace V of some  fixed np-dimensional 

complex vector space. 

Assume that  for any well-determined system 

n 
(1.6) £    *»ci   A*     - o,      k = 1,...,P 

i - 1      "      ox 

the tangent space T of the class of solutions ((u"1',... ,u )|  of (1.6) 

is isomorphic to V*s the dual of V. Then one can define two systems to 

be equivalent if the tangent spaces of their classes of solutions are 

isomorphic to each other. Clearly this implies that they possess the same 

solutions. 

L - WWWWWM 
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Without using the above assumption, two systems (1.6) will be 

called equivalent if the corresponding spaces V* are isomorphic.  This 

means simply that one can apply a non-singular linear transformation, 

depending on X/< U, to obtain the equations of one system from those of 

the other, This definition is less satisfactory than the one just 

suggested only in that it characterizes V-» purely formally. 

&3.  Statement of the problem 

If a given system is equivalent to a system one of whose equations 
• 

happens to be a conservation law, the original system is said to contain 
j 

the conservation law. Geometrically, the space dual to the vector 

consisting of the coefficients of the —r- appearing in the conservation 

law contains V*. As an example suppose n = 2 and p » 1.  Then ifoC and °* 
1 
Iare differentiable functions of u alone,  the system 

§5 

(1.7)      -x1^- * «?hz   -0 
^x       hx 

e-- 

i contains infinitely many conservation laws, depending on a single 

arbitrary function.  Namely. 

v     u   , V    u  ? 

(1.8) -K    f * (v).f(v,dv «4   <*/(v)f(v) dv = 0, 
^)x J k  J 

where f= f(v) is the arbitrary function. Note that the tentative 

assumption of ^2 always holds for p « 1 so that the equivalence of (1.7) 

and (1.8) could be taken in the earlier sense if desired. 

The problem is to find how many conservation laws are contained in a 

¥ 

fit 

• 
*•** —« •• V . 
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given system.  In particular it is of interest to learn when a system 

is equivalent to another system consisting entirely of conservation 

laws, (0.8) for example, and in how many ways such a representation 

can be found. One surprising result is tnat even if those representations 

which can be obtained from one another by linear combination with constant 

coefficients are included in the same equivalence class, there is still 

a wide variety of systems which can be represented by infinitely many 

equivalence classes. 

From now on we restrict ourselves to two independent variables, 

n • 2, except as noted. The number of unknowns will be arbitrary, 

although all of the chief difficulties of the problem occur when p = 3. 

We further assume that the functions oC . are independent of X.  Thus 
J 

the existence of conservation laws is a purely local problem in U. 

ki 
; The functions <K are assumed to be as many times differentiable as 

needed in some neighborhood of u = u; they are assumed to be analytic 

in Chapter III. Only well-determined systems will be considered. Finally, 

- in order to avoid considering several exceptional cases, the p 

E ' 
characteristic directions  in X will be assumed to depend continuously 

fm on U and to be distinct,  but not necessarily real,  at   (x   ,u ),  except > tf o     o 

as  noted.     Thus  it does not matter whether the  system is totally 

hyperbolic or not,  e.g. 

For convenience,  specific reference  to u    or  (x  ,u )  is usually 
* ooo 

omitted.,    All the results  of this   paper will be given only for a 

neighborhood of this  point.     If the appropriate  conditions are  satisfied 

in a  larger portion of U or of Xx U,  the  results  can clearly be extended 

** 

. 

1 to this   portion. 

• 

iwi"i <J»»'WW—nmxmm>.-*9+.-, 

\ . • 
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§ U.  The corresponding linear equations 

•;• -- 

!• 

Let the system 

(1.9) ^   )£+<&   *£-0,    k-l,...fP 
»    ox        r    6X 

satisfy the assumptions of ^3 and let 3       =    (J -,, 5 _ ) 

annihilate the .*  characteristic direction in X, jL  • l,...,p. 

The matrix  (/ , o*    / ? c<. .  -»  is of rank p-1, so that to each 

characteristic direction in T there corresponds a unique characteristic 

direction in U,  denoted by *V)  - (Qfl  ,..., "^ P ) which is defined by 

(1.10) (j i^-p1 • I 2°^ !? )?£ = 0,  (no summation on i ). 

- Since the characteristic directions in X are dis»tir:::t the matrix 

h        A, (^ -J)  is non-singular. Setting 

(i.ii)      |3^  -oc'^-vj 

| 

I. 

equation (1.10) becomes 

n y 

(1.13) |*|3 ^ • l2 f*]
2 - 0  (k-l,...,P) 

(no summation on «* ), 

so that the ratio p .  • r ;? is independent of k. Furthermore, for 

at least one value of k not both 

is well-determined, that is, 

kl   A   a k2 and p^ vanishsince (1.9) 

L 
- • -   - 
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C1.U0        det     (]ipM2f )/0. 

Let  (u.,... ,uf; u2 ,.. • ,u£ ) be any member of V* and set 

(1.15)  uj - *?J <r-[ 

i 
• 

i * 

1 

so that in the new coordinates V* is defined by 

k - l,...,p. (1.16)   e*p.{ -^^2 -°. 

Since 9) j,     :   y* is well-defined and independent of    k we may use kl       CK k2 

the  elements 

Ji —I —l Ct       =    (0,..., a—. ,...,0}0,..., ff~~ 2,...,0)    as a basis in    V* 

respect to the new coordinates, where 

(1.17) o=1 $fX    * 0=2 &T '" °»       ^no summation on A). 

But    (1.13)     and  (1.17)     imply that 

(1.18) det      (      X 2     ]       =0, I- 1,...,P, 

which is merely the definition of    V#    in the nsT? coordinates. 

Suppose    (1.19)    contains a conservation law 

with 

,     ^tl1     W2 M1   i>/.&02     l/ 0   . 

Setting 

. - -***- .• L^-hMiwKnaupBi 
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i.M*   .„/       iu?    „   »3/ d.20)        U^-UL. -7   ,  a, - ^ 
*u'"    'i        °: 

this may be written as 

(1.21) 0~1 Up   0X  + C~2  U      0^  = 0 , 

and we may speak of the tangent vectors \J ^     in the tangent space of U.  r 
Then the elements which arc dual to a  space consisting of the single 

1 12 ? 
vector     (U,0  ,...,U 0 '«     U 0  ,...,Uj# ) must contain    V*,  expressed 

-* 
in the new coordinates.     It will suffice to look at the basis  elements 

of    V*.     For each X we  have 

_0 i     _ 0 o o 
(1.22) ff~      U. 0    +0-*     U o 0    = 0,     (no summation on X , 

A = l,...,p). 

i Referring to     (1.18)    this becomes 

I   *l   „.l   .   ** (1.23)        I"  ,   Uo0X •   *      U 0 ' - 0, (no  summation on ^ 

i- l,...,p). 

It should be noted that these equations are entirely independent of X. 

Except for the trivial constant solutions, there corresponds a conservation 

law to every solution of  (1.23), which is a linear system of partial 

differential equations in the space U. 

* •-•' >>-. 
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£ S»  The case  p = 2 

In this case the tangent vectors in U are of the form 

(1.2U) 
^u1  ' 3 In* 

i ~ 1,2 

Let (5 jj) be the inverse of (*{*), $^ *| J • 5^ ^ J = J j. 

Then an integrating factor M. always exists such that 

• 

M ( $ |    du1 • $ p    du2)    is  a total differential,  say    dv^,     j - 1,2, 

so that 

(1.25) 
<5u 

Mj Sk-nE> (no summation) * 

hence 

• 

tog I 

Si- 

*f • 

(1.26) f  i i v   .1 
flu 

6vJ 

and    (1.23)     becomes 

(1. 27) * J ^ *   >J ^- - 
^        3HvJ 2^vJ 

j » 1,2,    after division by    M. 

The system    (1.27)     has a number of solutions about    u      defined by two 

arbitrary functions  of a single variable,  as one easily shows by the 

Cauchy-Kowalewski theorem,  if the } V     are assumed to be analytic. 

This existence theorem will be  given in a  particularly nice form as a 

special case of a more general result in Chapter III, ££3,  5.    Thus 

for  p - 2     (1.9)     is equivalent to many systems of conservation laws   [3] 



. 

- 

i 
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§ 6«  The case p > 2 

In general one cannot expect to find integrating factors leading 

to the sijnple form (1.27) of equations (1.23); the case where this 

can be done is treated in Chapter II. 

In any case the system (1.23), or any system equivalent to it, is 

over-determined for p > 2, that is, there are more linearly independent 

equations than unknowns. Therefore, in order to find results analogous 

to those found in £ 3 and ^5 for p " 1 and p «• 2 respectively, one 

should expect that certain int,egrability conditions must be satisfied. 

As noted in Sh  the matrix (i?n)  is non-singular, hence the p 

operators U. are differentiations in p distinct directions which 

span the tangent space in any point of U.  The U« do not commute with 

each other in general.  However, their commutators 

p, p .   <><w .  ^07 „ 
(1.28)       [VJ5    £        (^   ^    rHl   ^) 3   ~<m        fcj^l,    h 

j,k~l 

1 again lie  in the  tangent space and so may be expressed  in the  form 

(1.29)        [UJUJ  H   ^yJ      U. 

for certain analytic functions    £"*    •   jH    (u)    called the structure 
>Cm *m 

functions.    One easily checks that for any suitably differentiable 

function    0 • 0 (u) 

(1.30)     u^(um0) •- um(u^0) = [yjm] 0 

- • 
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(1.31)       y;j      •   -g'J    - 0 ; 
I m Km. 

furthermore the   JfJ     's must satisfy a relation arising from 
£m 

Jacobi's  identity 

Z       tEUaU ]U ]  s t <t m    n 

(1.32)    [tyuJV • [[uraun]u^] * [fiyj^uj =0, 

S 

where    Z    represents cyclic summation as indicated.    If the  t        's are 
Jha. 

constant,  the  fundamental theorem of Lie groups asserts that there exists 

an analytic group for which the    U#    are the infinitesimal transformations. 

If   % J    = 0 except when    j "I   or    j ~ m    one can find integrating 
-Cm 

factors    M«   and a change of variables, v •   v(u),    so that 

(1.33)        U^ = M^   ±1, i= 1,...,P 

as  in  S 5.    This will be shown in Chapter II, which deals entirely with 

this special case, and again by a simpler means in Chapter III. 

I 

g 7.  A preliminary transformation 

The elementary methods of Chapter II are better suited to deal with 

tne case where either ( oC . ) or (<=<- . ) is a non-singular matrix. 
J J 

kl Suppose that (<*. T* ) is singular. Since (1.9) is well-determined there 

- 
a 
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exist constants ft1  = {J*\, /*•£) such that (^U. J «* ^ + /U.1 *  ) 

1 2 
is  non-singular in a neighborhood of    u • u      and such that jU-    and/*- 

are distinct directions in the dual of the tangent space of    X.    letting 

(1.3U)        x1 

so that 

ii    1 /*•£  X1   * /*\  X<  , 1,2 

(1.35) A   */*£  v4i*/^   4?, 
bx *x x 

we see  that    (1.9)    may be written 

(1.36) |   <«f^   •   «f*^)- J   fix J   «x 
3-1 

where 

(1.37) S^f-A^f •/*2*? 

and     (otkx)     is  non-singular.     Thus     ( <* j  )    might as well be assumed 

non-singular at the outset. 

If 

(1.38)        H--    £    >?}   O^i 
ix       i=1       << 

then 

J       MlJ (1.39)    0-; ^i^ *^i 

^ 

L- 
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. 

of a conservation law is invariant with respect to linear coordinate 

ctianges in X. Hence the existence conditions ' (1.23) become 

-t 1 1 9 

l 1  -1    2   -J 
where /*«/»*  JX ?/**  J ?. Thus the ratios 5-i f 5? at any 

point of U may be changed by a protective transformation.  In particular, 

since the protective group is simply transitive on any three of these ratios, 

for p • 3 one may adjust the characteristic directions in X to be any 

three arbitrary distinct directions at u . This transformation could o 

have been derived directly from    (1.23)    simply by setting 

1 
i rfl i A2 (1.12) f- »/*£01 */*\ $ 

without  investigating the corresponding transformation in    X. 

Taking     (oi.   .    )     to be non-singular merely corresponds to 

J 1^0, I  - l,...,] 
kls 

Assuming that  ( <*<•. . )  is non-singular, equations (1.9) can be 

written in the unsymmetric form 

(1.U3)  f-\ *   £ <* 
6x       J-l 

k ^- o 
a *x2     ' 

I,...,P, 

w 
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In this  case the derivation of § h is easier to give.    For suppose 

a conservation law exists,  so that 

(1.19)  £(*£ ^ • &£ H)-°. 
. ,       iuj    Ox &uj    6x 

Multiplying    (1.U3)    by   ^-j-    and adding, 
bu 

i ,k=i 

hence 

(1.U5)    <   ri^^ j rr    < r- rr ' />  ,   6u "    6x .  T     duj    bx 

But the  p elements —r,  j = l,...,p determine a basis in V», 
bx 

so that (1.U5)  implies 

" 
(l.Ul)  £ 

k=l 

*0 *k 

du 
*0_ j • 1,.--,P 

Is. 

II 
i 
i i 

from which one derives  (1.23) merely by diagonalizing  ( °< .  ), 

which is possible because the characteristic directions in X are distinct. 
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CHAPTER II 

THE SH5CIAL CASE 

§1,       The  tangent vectors    U, 

A set of tangent vectors   (operators)    U.,   j  • l,...,q    is 

complete   if and only  if the commutator of any  pair of them lies  in 

the tangent space  the  set spans.     (For convenience here we  speak of 

tangent vectors even in the absence of a manifolr   or class on which a 

tangent vector could be defined.)     It is well-lcnown that for any- 

complete set, depending continuously on    r    parameters,  r > q,  then 

there exists an    r - q    parameter family of integral manifolds  in the 

parameter space whose tangent spaces are spanned by the given vectors. 

Given a set of vectors     U.,     j  = l,...,p,    suppose there exist 
J 

non-zero factors    M.    and a  change of variables,    v • v(u),  such that 

these vectors  are of the form 

(2.1) U   s M      -i-  , j = l;...,p. 
J J    6vj 

Then 

| | (2.2) [U.U. ] s! \.   U.   -   5 *    U. 

'I 
where 

(2.3) M.    1 X.   « U.M. , 

all the other structure functions  vanishing identically.    This  is  clearly 

equivalent to the assertion that any subset of the vectors     U.,     j • l,...,p, 
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is complete. Conversely, the following theorem holds. 

THEOREM A;  If any subset of tne vectors U.,  j • l,...,p is complete, 

then there oxist non-aero factors M .    and a change of variables, 

v = v(u), satisfying (2.1). 

Proof; A sequence of changes of variables will be constructed in such 

a way that at the n  stage the form (2.1)  is displayed for all j, 

< 
j = l„...,n n - p. Assume that the first n - 1 stages have been 

completed. Then, after multiplication by suitable sealers, the first 

n vectors may be assumed to be of the form -^-5-,..., -2— \   x'       ' \   n—1' <bu Cu 

"7    -2— > where   V     " 1.    Since by assumption the commutator  [-=—"*]   ] 
du" ouj     duf 

is a combination of ~-    and V   -2--, we have    -=-r "7     *      1 "^        for 

Ouj 6vF •du'3 J 

some A,,   j / k.     But fj" - 1    implies      43_ - 0,  hence A .  - 0, 

so that |J   -    7>3(J:   n»   ... .„P 71J -   ??J(uJ;  u',...,up)    for    J - l,...,n-l,  and 

^„n .,P\ Y = T(u »"-»u }    for    J = n»---,P 
tr The    n   ' change  of variables will be assumed to have the form 

rv2 « v°(u']- un,...,up) j - l,...,n-l 

(2.U) J 
^VJ » v

J(un,...,uP) j - n,...,p. 

Then for    j " l,...,n-l 

(2.5)  u.=_L.E^I__L.2ki _£_ ;    (no summation on j) 
J  ouj  duj ov'* duj ovj 

so that the first n - 1 vectors retain the desired form provided 
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*—* f 0.     The    n *   vector becomes 
^uj 

(2.6) U    *"?Pi—    =>7Pil-    -L_  , 
dur ^u^    dv 

and hence will have  the  form    U    s o" 2^L   _£_    if ancj only if 
n       '    iu?   bJ1 

7     —^    vanishes  for    j j* n.     For     j  «• l,...,n-l    this requirement is 

(2.7) y    ^    *      £-nkk^. o, J-l,...,n-l, 
duj j^ ou 

and for each of  chese equations  one can find a    vJ     for which   Q-L! ji Q. 
buj 

To  satisfy the requirement   for  j  = n,...,p,     each of the    vJ,s,   j «= n,...,p, 

may be chosen as an independent solution of the equation 

(2.8) |^k    & 
, ou k=n 

0, 

in which the coefficients depend only on    u  ,...,u ,     In particular, 

| n *   n 

v    may be  chosen in such a way that   Q-±— f 0.     Clearly the  Jacobian 
bu11 

matrix of the transformation    (2.U)     chosen in this way is non-singular, 

For there is nothing below the first n - 1 terms on the principal 

diagonal, and the block: of side p - n * 1 in the lower right-hand 

corner represents the ncn-singular change of variables chosen last. 

This completes  the  proof. 

Some further  properties  of vectors satisfying    (2.1)    will be given 

for convenience.    First,   for any differentiable  function    f, (2.3)     implies 
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(2.9) 

- U.f U.M. 
U    (-L-)   = _i-    _    f _>Li 

J      V Mi (M.)2 
i 

- ~~ (U.f •fif1.  )  2    — U.   .£ 

•where    U .  ,     is the operator    M, U .  (-rr- )  a U .  • Jj" J". 

w 
If    f    • -—  .,  j = l,...,p,    then 

(2.10) 

trw~ fu-   • (u.f.) - U.  ,   (M.f.)\ 

In particular,  since    (2.3)    can be written 

i 

1-    lo. (2.11) J*    - M. -H—    lo«    M,   , 

we have 

(2.12) k k 
Ui;j*jk = Uj;i*ik' ±'i>k = 1

>---»P- 

I Equation    (2.10)    can be given an interpretation in terms  of the 

operators    U      alone.    Given    p   functions    g.,    a necessary and sufficient 
J J 

condition that there  exist a single function    g    such that    g.  " U.g, 

j • l,...,p    is that 

(2.13)        U.  .g.  = U.    .g., i,j • l,...,p. 
.-•• 

t*»-»i___ 

•"-:.^J 
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Another proof of this statement follows from a form of Stokes• theorem. 

Let Z  represent cyclic summation, Z F(ijk) = F(ijk) • F(kij) * F(jki), 
ijk ijk- 

-|     O—        -j 
and suppose 00 ° du      =   u>   ,    then for p • 3    we have 

dg i(3„ ouP 

(2.Hi) 

on 

R 

where E = det ^?>    Formula  (2.lU)  can be proved by means of the more 

customary form of the Stokes theorem. 

The factors M. can be calculated directly from (2.3) without 

involving the sequence of changes of variable used in the proof of 
i:! 

THEOREM A. Once these factors are known the desired change of variables 

1 % can be made directly. 
I 

An alternate proof of THEOREM A will be sketched, based on the 

t direct computation just suggested.  Bv performing the calculation indicated 

e ' 
in Jacobi's identity, (1.32)„  substituting tf ., Vp    for  [U .U, ] whenever 

JK r        j • K 

possible, one finds  (2.12)  under the assumption that % . .  = 0 except 
- ij 

for k » j or i = k.  For each i the system (2.3) can be converted 

into a homogeneous system by considering M. as a new independent variable; 

then U.  can be found in terms of the other independent variables, if the 

new system is complete, simply by considering the constant solutions to 
I 

the new system.  It turns out that  (2.12)  is exactly the condition that 

the homogeneous system is complete, hence the factors M.  exist.  Thus 
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the commutators of the vectors    -— U.     all vamsh,   from which it 
1 

follows  that they are of the desired form, —*-r  . 

A third proof of THEOREM A is given  in Chapter III, §2. 

In the new coordinates  the    vJ    axis may be described as the 

solution of 

(2 lO it. =       - 4L. -       - *s£ <. «£.!>; 0        ...        1        ...        0 

passing through the origin.  In the original coordinates this is the 

solution of 

(2.16)     **j -...-52- 

passing through    u  .     The curves thus obtained for j « l,...,p    are at 

each point tangent to a characteristic direction in    U    for the system 

(1.9)    and are called the characteristic curves through    u  .    As THEOREM 

A has shown,   it is  the  peculiarity of the special case being considered 

in this  chapter,   in which any subset of the tangent vectors    U.    is 
J 

assumed to be complete, that the p families K. of characteristic 

curves through all points of U may be used to define a coordinate 

system.  This means that if .j-,»...»J  is any permutation of l,...,p 

then those members of K.  intersecting given members of K.  form 

the same family K. .  of two-dimensional surfaces when j, and j„ 
°1J2 X * 

I i 

i 

ar3 interchanged;  those members of K.  intersecting given members 
i J3 

1 
1 

«•«- 

• 
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•5 

of    K.   .       form t;ie  same family of three-dimensional surfaces when 

j-,   3~ 3 3    are  permuted, etc.    These hypersurfaces are called the webs 

spanned by    j1 j2,     j1 J2  j_,    etc. 

& 2.       Conditions  for a  representation by a system of conservation laws 

Assume that an appropriate  change of variables has been performed 

kl 
as  in Chapter  I, £7,  so that     ( ©C .'    )     is  non-singular.     Then 

1 :? ^ 0,     j  = l,...,p    so that  in the special case,  in which any subset 

of the tangent vectors    U.     is  complete,  the  existence conditions     (1.23) 

become 

(2.17)        *£•   jJ*£-0, j «1,...,P 

after division by    M.,    where   $0 "   /1 /  •    Note that the   JJ    are 

distinct.     The number of solutions of    (2.17)    gives the number of 

conservation laws contained in    (1.9).    More specifically,  the question 

here  is to represent     (1.9)    by a system of conservation laws.     The 

necessary and sufficient condition is  that there exist solutions 
1 1 2 2 

(^i.       ijC,..^!)    of    (2.17)    which span    V.     Hence, 

i 

^vx dvp    <VX hv 

from (2.17), where the values of ^-=r> • • • J^-T determine those of 
wl    v^l ov1    *>VP 

5J~r,....S*--.  it is clear that a necessary condition is that, no linear 

relation exist among the ^^V,... j1^-. 
ov    <WP 

We try to concoct such a linear relation.  Let i j k represent 

any three distinct integers among l,...,p. 

s2^1     \2wl 
Since ^-fc  - —— -r    we may cross-differentiate the equations 
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of    (2.17)    to find 

til \£ .      - (2.1?) 
fcv J 

k    3 rrmic * *vj ^ 

that is, settinp 0 =0 for convenience, 

-k   w ,vj 
(2.19) ^20 i 

6vj fcv1 
__ $1 hj_ _ ui ML) 

if 

p 

since    Ju /   J   .     It should be noted that the  system of    (  J )    second 

order equations  obtained by writing down every instance of     (2.19)     is 

entirely equivalent to     (2.17).    Differentiating    (2.19)    with respect 

to    v      gives  rise  to new mixed second derivatives on the right hand 

side, which can be evaluated exactly as in    (2.19)    in terms of the  first 

derivatives of    0  .    Similarly the third mixed derivative , ' .—r can 

be expressed in terms of the first derivatives. Equating the two third 

derivatives gives a linear relation among the first derivatives of 0 

all of whose coefficients must vanish if the vectors 

in this <*£,.. • A4 } t4> • * * £4 >    s <**   V«    ^ ^efficient of   *£ 

linear relation is especially easy to compute if one notes that the mixed 

second derivative 620 <S20 
4v    dvj Avj ^v1 

is expressed as a linear 

Art     Art 
ion of only the first derivatives ~-r   and -£— . Equating this 

t V     $>vi 
combinat 

coefficient to zero gives 

^>-^<:rS£ t'2 20")  — (  "i 

as the necessary condition. 

) - 0 

: 

• 
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Or.s might expect that the coefficients of «-r and siL. would 
ov'1 Wj 

lead to new relations which cannot be obtained merely by permuting the 

indices     i j k    in    (2.20).     They do not.     In fact,  letting    0. . 

represent the left-hand side of    (2.20), the entire first order equation 

in    0    becomes 

>k 

where Z represents cyclic summation, 

Z F(ijk) - F(ijk) • F(jki) • F(kij). 

Equation (2,21)  can be proved by direct calculation, which is not very 

instructive. A simple reason that one set of indices  i j k leads to 

only one linear relation among the first derivatives of 0 will be given 

in Chapter III, §3. 

Equation (2.21), when written back in terms of the original 

variables and tangent vectors U., could be derived directly without 

making a change of coordinates. This might lead one to expect that a 

similar derivation with any tangent vectors U., not restricted to the 
j I ^ 

special case, would give a similar result.  In fact an analogue to  (2.21) 

can be found, but unfortunately it is no longer in general a first order 

equation; indeed It contains terms  ^~J    Uk (U^Jfl) , where i j k are 

distinct. Thus the only case in which the resulting equation is of 

; fe • 

j Si first order is  the special case considered in this  chapter.    The more 
1 I 

general second order equation can of course be vised to derive further 

1 

V 
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results in the general case, however, which will be done in a different 

setting in Chapter III. 

The integrability condition (2.20)  for the special case will be 

^ . more useful expressed in terms of the original variables and tangent 

vectors, since the coordinate transformation, v • v(u), and the 

integrating factors M. might be inconvenient to find in any given 

' 

• 

k 

i 

L 

example. 

k    1 Hk Setting f. = —:—7- 2i_ f    we note that according J   J3-f ^i ' 
to  (2.10)  relation (2.20) may be written as 

(2.22)     U. .(M. £*.)     - U. .(M. fjf). 

that is 

u.Jk        u.}k 

(2.23)     U. . (-i-T-) 

Thus we have proved 

k     n/   k 
THEOREM B:  Suppose <X , = "* .(u)  is a p X p matrix of twice 

differentiable functions of u which has  p distinct characteristic 

roots J . Then the system 

I 1 \ k    , \ 
—j      <r-rr     5     "•    ->*•***' 
ox      dx 

may be  expressed  in the   form 

ox ox 

P 1 
Let U. represent the tangent vector 7)      -*—*  , and suppose that 
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any subset of the vectors U.,... ,U  is complete. Then a necessary- 

condition that (2.2U) is equivalent to a system of conservation laws 

is that 

j4r u r 
(2.23)   U,.,(-^^)=U...(-f-k) 

for every distinct i j k among l,...,p. According to  (2.13) 

it xs equivalent to demand that there exist  p functions f  such 

that 

(2.2U) U.f    - -J—. , 

IH 
j,k = l,...,p,       j / k. 

* 

l 

1 

Clearly any system with constant coefficients  satisfies  the 

conditions  of the preceding theorem.     To  construct a non-trivial system 

sf "fcisf vincr   ul*i©ss  conditions   °n© rrxH ^Tit- ^sr0!1' writs  clowr*   a  Q^rc+ am nT 

conservation laws,  attempting to choose    p    pairs of functions  in such 

a way that the resulting system falls  into the special case.    This method 

is much more difficult than attempting  to guess the functions    X     directly. 

It  is  easy to check that  the  following example satisfies  the conditionst 

(2.25) 

/    du~   .     2  3   ^u1 _ - 
/         tr   *   U   U  *•   =    0 

bx ^x1 

b_u 

bx 

2 
3 1   bu 

u  u       ——*• 
bx 

bu3  .     1 2   bu3 _ _ 
—v • u u      —V • 0 • 
bx ox 

'• 
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• 

Another simple example is that in which 7  = J (u ),  i = l,...,p, 

whose solution one can easily give by assigning p arbitrary functions 

exactly as one was assigned in (1.8). 

§ 3.  Proof that the preceding conditions are sufficient 

According to THEOREM 3 there exist functions f  such that in 

an appropriate coordinate system 

if* = 1 hj^_ (2.26)   ^^-±—-   ai_ ,     i,k = i,...,P 

**       5-3     ^ 

so that     (2.19)    might be written 

(2.27)        *** -    ^   &-    *    *£    *L 
&vj<iv ^ vj   &vk ivk   dvj 

2 
where    0 m 0  .     By cross-differentiation as before  it  is  clear  that 

(2.28)      &L-.    •   It   ^    -   &J*   i£    •   ^   ^ 

for    i j  k    distinct, that  is 

I <2.w)  ii_ / . £ ht .\sl ^ . 
I • 
•j Define a new differential operator on any suitably differentiable 

function T by means of 

(2.30) ^ .  -V _i» e 
In 

e  —T" 
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L 

Note that although "¥. . +    (^Y. <   ) 

i 1'       '  n*l 1'       '  n    . 
n*l 

we have 

i i "    (^i i ) *^i       V± i (2.31) -f 

I 
n+1 

where the customary partial derivative is indicated by a subscript 

without underlining.  In particular "f .  •"+,, t\ » f.. + *t\ T 
.J   J  J£   J    J 

K 

and  (2.28) becomes 

C2.32,>    f1. - <\j f1 + fk f£ . 
JK   k j    }    k 

Lemma C. : Suppose *f satisfies 

(2.33) T  - fjjt. * fjt^ 

and let i,,,,.,i  be any distinct indices among l,...,p, say 
i     n 

l,...,n for convenience, n < p. Then 

(2.3U) -y. = £*-?. 4   i   n 
i=l 

A 
where 1,..-,i,...,n indicates the n-1 integers omitting i. 

In particular 

I (2.35) ff1 n  - £   tf1  4      J  n 

' Proof:  Use induction on n. By (2.33)  the lemma holds for n - 2. 

To show that n may be replaced by n+1 in (2.3U)  use (2.31) to obtain 

!   i 
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T l,...,n*l    k T lf....n
y
nA]L   ' n*l  l,...,n 

n 

(2.36 =  £ &.  F*  • T. ^  F1 * f A.t. F
1) v C»  N  i n+1    i,n+l      n+1 1 

i=l 

n n 

<  ' i n+1    <. T i,n+l * 
i=l i-1 

where P1 - f.    ^ 1,... ,i,.•. ,n lor convenience. 

But the second term on the right is 

S r-r f1  •t  fn41) F1 < •i n+1   'n+1 li  ; 

i-1 

(2.37)   . n 

«  ^t f1  F1 +T   f"*1 <  i n+1      n+1 l,...,n 
i-1 

!  i 
» 
) by  (2.33)  and  (2.35), which is just the induction hypothesis applied 

to f"*1.  Hence by (2.31)  and the induction hypothesis 

n 

-r =   < -r  (F1    * f1   F1) •t'    fn41 
J- Tl,...,n+1   < Ti l n+1   n+1  ;   n+1 l,...,n 

i-1 
• • 

| (2*38) =  C^i fJ,...,i,...,n+l *"**n*l fi*.-.,n 
i-1 

I 
I, - '  n+1 
I 
> 

ac- asserted. 

V.  i 1,...,i,...,n+l 
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Fnrmula     (,2.35)     may be   iterated to find an expression for 

n*l i 
f, directly in terms of the f^    if desired. 

If "f  satisfies     (2.33), that is 

(2.39)       (e%e^=    f;>  (e + ) . ."* • f J (et )k e" ^ 

then clearly    0 -- e satisfies     (2.27). 

Similarly    (2.3U)     becomes 

(2.U0)       0, „    -     %    0.   4 * 
i=l 

Since the right-hand side of    (2„Uo)     is symmetric  in the indices 

l,...,n    it is clear that the computation of    0, is  independent 
x.•••, n 

of the order of differentiation. Thus any mixed derivative of 0 

involving no repeated differentiation may be uniquely evaluated in terms 

of the first derivatives of 0. 

THEOREM Ci  Under the hypotheses of THEOREM B, if the integrability 

conditions  (2.23) are satisfied, then a conservation law in a neighborhood 

of u * u  may be specified by assigning values of 0 (=0 ) on the p 

characteristic curves  (2.16) through u .  In particular, by successively 

determining conservation laws for which the derivatives of 0 vanish 

along all but the k  characteristic curve, k = l,...,p, it is clear 

that any system satisfying (2.39) is equivalent to infinitely many 

systems of conservation laws. 
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t I 
Proof;    Write    0    for    0  (0,.„.,0),  0      for    0  (0,..., v  , ...,0), 

0        for    0 (0,..., v,...,v k  ...,0)   etc.,  and    0 a    for   Q-2-. , 

ft1" "       iv 
for    —fr-—j-   ,  etc.,  and note  the  following sequence  of integral 

fcv    cv 

formulae, which may be verified simply by evaluating the integrals: 

(2.1*1) 0^   =    0    •    C       $l^1 

(2.1*2) 0^k    =    (0i*0k)- 0*   ^     0 [k    dvkdv^ 
0 0 

:2.u3) 0-kJ -     (0kJ  • 0J* • 0^k)   -   (0^ • 0k • 03   ) 

fj" * 0 *    J   J   J    fykj dv Jdv kdv  ' 
0     0    0 

! 

and so forth,   until    01'2'*-*»p = 0  (V,,,., vP)  at any  point 
*. 

is   piven  by 
W. 

0->-j.««,P « <" (all 0'<* with p-1 entries) 

| 
(2.UU) -   b-(all    0's with    p-2    entries)     ••*- 

1 p 

...• (-1)^0 • c... f 0X _ pdvp...dv1. 
t f: o o 

The data    0     ,     J. = l,...,p    is  given,  so  that     (2.hi)     is   trivial  for 

all -£ .     Everything on the  right-hand side of    (2.U2)     except the  integrand 

is  therefore  known.     But according to  the  lemma  the integrand is  just 
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a known linear combxnation cf the first derivatives of 0 which may 

be integraJ 3d by parts to give a linear integral equation in 0 for 

which several existence and uniqueness proofs can be constructed. Thus 

all the 0  " can be found, so that everything on the right-hand side 

of  (2.U3)  except the integrand is known. Again the lemma allows the 

integrand to be uniquely expressed in terms of the first derivatives 

of 0 which rives rise to a new integral equation, and so forth.  This 

process successively finds the values of 0 (V ,...,V ) on higher 

and higher dimensional webs spanned by the characteristics, finally 

giving the values on the p-dimensional web, that is, in the entire space, 

at least in a neighborhood of v = v , depending on the method used to 

solve the integral equations. 
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SHAFFER III 

THE GENERAL CASE 

^1-       Exterior differential forms 

In Chapter I the existence of conservation laws was entirely 

reduced to the study of the linear system     (1.23).     This  system is 

repeated here  for convenience as 

(3.1) J -L U£0X  •   l2  U^02  - 0, i- l,...,p, 

I 
where § .     are functions of U, and the U a   are linear differential 

first order operators, differentiations in the characteristic directions 

in D. 

(3.2) U£=7^"-^_,       i-l,...,p, 
h u 

spanning the tangent space of U, which is defined in Chapter I, b2. 

The dual to the tangent space may be identified with the space of 
•'. 

first order differential forms, called Pfaffian forms,  over U, since   

the former transforms ccntravariantly and the latter covariantly under 

a change of coordinatess   giving rise to appropriate bilinear  functionals. 

It will be more convenient in the  present chapter to workwith the space 

of differential   forms,  spanned by the dual basis 

! (3.3) vo   n S    du 
! <r 

6 <r\     > 1    <r*      r * 
where     ($£_)     is  the inverse of    (*» 0 ),    i     7J> .    =  0   .. 

This space  is  called the co-tangent space of U. 
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An exterior differential form of degree    r    in the variables 

1 N 2   t,., ,7       xs  any element of the Grassman algebra of degree    r 

generated by the  space of  Pfaffian  forms  in the    N    variables 

1 N z   , ...,z   .     Thus,  if the  Pfaffian forms are spanned by    9,, ...,9„, 

an exterior differential form of degree    r    is a  linear combination 

with analytic coefficients of terms    0. A 0.   ^ ... . 0.     ,    where 
12 r 

i     .. „vi       are  integers   from    1,...,N,     the sign    n/\"    denoting 

exterior  product.     The definition of exterior  product assumes that 

(3.U) 0,  A   ©, •     0    A   0 =     0, 

These forms constitute a ring in which products are formed by 

exterior multiplication. Since  (3.U)  implies that the square of any 

element vanishes, it follows that this ring is of dimension 

(   )  * ('      )  •»  ***•(«)  ~ 2" - 1 considered as a vector space 
| 1      \2 N 

| fj 
j over the analytic functions,, thus of dimension 2 when the unit element 

is added, introducing the analytic functions as differential forms of 

degree zero. 

i , From    (3.U)     one  easily shows that the forms     Q, ,,....G      are 

< linearly independent if and only if    Q AG2A...^0      is  a non-zero 

W- form. 

| The operation of exterior differentiation,  denoted by    d,  is 

defined on a monomial    a dz  """* ,.. A dz by 

L 

r      1 N 

(3.5)      d (adz  -A...Ad-.  r)  -      <    ^-dzJ
Adz  V-«A

dZ> 

J-l     ^J 
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and on arbitrary exterior differential  forms by means of 

d( ©    *  ©'    )     B    d©    •    d®',    Clearly 

N 
11 xr <T l(adz    A...Adz      )  =      <> dd(adz    A ... . dz      )  =       >     •=-«    dz.dzJ„dz    . ... . dz O  a         H,k   ^J   Ar,   1 r 

(3.6) 

=    0 

^=1 iz 4zj 
K, A A A A 

by    (3.U), which gives  Fbincare's theorem, 

(3.7) dd ®   - 0   , 

for an arbitrary exterior differential  form tt/ .     If C/ is an exterior 

differential form of degree    r    and (H)        is an arbitrary exterior 

differential form,  then the definition of exterior differentiation 

implies 

| (3.3)      d(6)A®' ) -d0A®' * ( -Dr0Ad0 ' . 

A differential form D. which is  the exterior derivative of another 

differential form, li -    d & , is called an integral,  or total differential. 

Roincare's theorem has a con verse,  namely,  if    dii= 0    in a neighborhood 

of a given point,  then XI  is an integral there,   provided that the 

coefficients of IL are analytic  in the  neighborhood. 

The exterior derivative of any Pfaffi.an form is an exterior 

differential form of degree two.    Consider the  forms uJ^,    JL • l,...,p 

given in    (3.3)     for example.    We have 

6 1       1 ?     5* 
(3.9) dw*   =    - |    c*     u/AuJ, 
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0    x 
where we might as well take cia-   *    c^p   = 0 due to (3.U). 

If f is an arbitrary analytic function of u ,...9vr     then 

(3.10) df- -    **-    du°"    - %h-±- Sfdu~   -    DVfoJr 

so that 

0 - ddf = d(UT f )A UJ°" •    U^ f d UJ °~ 

- Up>   (Up. f)uJ Au/~*    Uxf dtov 

(3.11) = 3 {u^,    (uV f)  - U^ (Up f)]uvui% ur f do;1 

= i    [Up UT If u^«*»*i    ur f d^* 

1 «.t P   «"    1    i: P5" 

-|     (<f?<r -  c£o-   )      U     fuJ^uJ0" 

j by the definitions     (1.29)     and     (3.9)     of the structure functions 
I    * r 
•' flpo"   and the  functions    CpV-    respectively.     By definition op<r   =    c^o-    - 0 

for   P  -   0"   ;     and since     (3.11)     implies  that the coefficient of '*> hoJ 
• 

must vanish for tr   / p    it follows that the    Cp<r     of     (3.9)     are merely 

the structure  functions, 

f 

(3.12) Cp<r      = ^o-   , p.ff.'C = l,...,p. 

•*• 
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5 2.  Frobenius' theorem 

In Chapter II, Si, it was noted that the complete system (2.2), 

repeated here as 

(3.13)        Yl.§" = 0,      i- l,...,i 7- 
N 

for convenience, where In * ^> f i    -=— is a linear homogeneous 

J=l       J 

first order differential operator in a neighborhood of w  in a 

manifold W of dimension N, possesses N-r functionally independent 

solutions.  It was further noted that there is a change of variables, 

w - w(v), such that the given system becomes Jacobi complete, 

(3.3)0     ^4 = °,     i- l,...,r 
fcv* 

The solutions CD  of this system are arbitrary functions of v  , 

^c = r*l,.o.,N.  Thus one can map a neighborhood of w , given by the 

coordinates v = (T',...,V), onto a neighborhood of some point 

m = (in ,...,m ) in an (N-r)--dimensional manifold M by means of 
o    o'  ' o 

*•   m  v •* ,       X - r+] (3.15)      m      » v •* ,       X = r*l,...,N. 

M is the integral manifold determined by (3»13)  in a neighborhood 
\ 

r of v 
The  fact that the vectors -2-, ,     /= r*l,...,N    span the tangent 

space of    M    in a neighborhood of    w      is of no interest since these 

vectors depend on an a  priori knowledge of    M.     However,  the differentials 

dv^   = dm »    *• r*l,..«,N    span the  corresponding co-tangent space and 
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can be invarianily described as isomorphic bo the annihilator of the 

vectors -2-» ,  .t - l,...,r, given in (3.13) and (3.lU), which determine 
o V 

subs paces of the tangent spaces in a neighborhood of w . Furthermore, 

since these differentials are independent their exterior product is 

non-zero, and so one could equally well describe M as the integral 

manifold through w  for which dv  ^ ... dv / 0. 

It is desirable to find a criterion for the completeness of  (3.13) 

in terms of the annihilator A of W, ,... ,W . Suppose  (3.13)  is 

complete, and let 0 -. ,... ,Q„ be any basis of A.  Then each Qp  is 

r+1     N        r*l     N 
some linear combination of dv  ,...,dv , where v  ,...,v  are any 

independent solutions of  (3.13), with coefficients which are not a 

l priori known.  Since the square of any Pfaffian form vanishes, only one 

: term appears in the product IL = Q - ^ ... . Q,,, namely, 

(3.i6)     n- 9r+1A...AoN = Advr*\... AdvN. 

Thus    A    is completely described by a non-zero  form i~l for some unknown 

factor A ,A / 0*    Differentiating  the right-hand side of     (3.16) 

according to     (3.6),     all x,erms  except    d/t^dv      A   ...     dv      vanish 

by Poincare's  theorem.     Hence 

I i (3.i?)       dii = ^^JX 

so that d _fl is  in the ideal generated by J^i-over the  ring of differential 

forms    which is also expressed by saying that the differential form    Jl 
j 
\ '&: is closed.    Conversely,  if J\ is  closed,  Frobenius'   theorem asserts that 

j there  is an integral manifold through    w      for which S\f 0,  that is, 

satisfying  (3.13). 
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As an application we return to the problem of Chapter IT, SI to 

determine when multiplication by an integrating factor and a change; of 

variables u • u(v) will bring the operators U« 5l9. -2—  into the 1      l iu°" 
form    AnU^ s   -^ .     If 

(3.18) U -   »   A-   i-j , i- 1,...,P 
*- /\C      °VA 

then the dual basis  is   of the  form 

(3.19) ou^^du^    =//l/dvi, /-1,...,P 

Thus   for each JL   the differential-^- = **J     must be closed.    That is, 

the exterior fonti 

(3.20) duo1   -    - J ^p^^uo9 

must lie  in the  ideal generated by   LO •*,  so  that X   „ must vanish except 

when cr   » JL    or P   m •* .     This  condition,   found  previously ir Cliapter II, 
§ 

is both necessary and sufficient by Frobenius'  theorem. 

S3.    Exterior differential systems 

[ Instead of  prescribing only 'a  form -H- which does not vanish on some 

unknown integral manifold one might also seek integral manifolds on which) 

in addition, a prescribed system of exterior differential forms does vanish. 

Problems of this type arise in a natural way from systems  of linear 

homogeneous   first order partial differential equations.    For example,  it 

is  of interest to consider the system of Chapter I, £5,  concerning the 

case    p = 2. > 
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W1)     j'i^.jf *£.„,      /I 1.2 

1 tl 
ri 1*1 !2 where T .  are known functions of v such that |  _  ~ 

*1   -*2 

/0. 

For simplicity we  introduce the unsymmetry of Chapter  II and take this 

in the  form 

(3.22) t£   •]'*£    =0, f-1,2. 
fcV 

Let 

(3.23) d02  - 0-,   dv1  * 09  dv' 

then    (3.22)     implies 

(3.2U) d0X - -^Xdv1 ~}\ 3--J-     *2"dv2 

I 
i 

i k- 
- 

i 

i 

Suppose 

(3.25) 

d0x - 0U dv1 • 012 dv 

d0„ * 091   dv1 • 0„ dv    , 
'2   ~  y2\ 

then exterior differentiation of  (3.23)  gives 

0 = (0n,dv
1 • 019dv

2)A dv
1 • (091dv

X «• 0„dv2)A dv2 Jll '12 2r ,2r 

; 

(3.26) 2 1 '2 
0io4v A 

dv    * ^21dv  Adv 
'12^  A 

-    (021 - 012) 
dv\ dv2 
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so that 

(3.27) 021 = 012- 

iH    1 620 
This was to be expected since it merely states that   ^-j - ^T^L 

Similarly exterior differentiation of    (3.2U)    gives 

(3.28) $fo *   ^021 =   3201*    $l012 

dS1-   J^«   I^dv2, 1-1,2 

r2    ,     rl 
Hence,  since by assumption    3     f    i   , 

(3.29)       021 " 012 * A01 *^   02 

1   J2      .  „2•     x       Now substitute 
where />-  - -5 T ana /*   ZI wT 

/        5^- 5X 5-3 

 ,_-  «„•.„     M.2«n     and take exterior derivatives to  find 

1 . ,2 

these values  into     (3.25)     and 
! 

11 
I 

(3.30) 

0 - d0-, Adv1 •   pxdv   Adv 

0 -   p dv2
AdvX * d022.Adv 

where 
.2    2 

fl - ^ • t/j vV >0i * {A+ ^ >* :,02 

P2 - /,2022 •  C/4 •/* V )01 + (A * ^V >*2' 

Finally (3.23) and (3.30) may be taken together as a differential 

(3.31) 

^ ' 2 

! 
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system in the four unknowns 0_, 02, 0..  02?, and two independent 

variables v and v , 

(3.32) 

^d01 - 0ndvX -  (^\ * A202  )dv2 - 0 

d02 -   {j*-Hx * s\  )dyl " ^22dy2 " ° 

d0u A dv1 •   (° 1dv1
A dv2 - 0 

P „dv2 dv1 •» d0oo K dv2 - 0 1 £   " £<: 

I -• 

I 
I 

! ? 
I t 
II 
i 1 

The relations d(0 dv1 «• 02dv
2) - 0 and d( J ^dv1 • J 20„dv2) « 0 

imply that the two Pfaffian forms in parentheses are integrals, by the 

converse of Poincare's theorem- Since these two equations can be obtained 

without differentiation from (3.32), we have omitted (j.23)  and (3.2U) 

from the collection (.3.32), In fact this system already describes the 

1      2 
original unknowns 0  and 0"    up to additive constants of no interest 

in conservation laws. 

Now note that further exterior differentiation of (3.32) yields 

only equations which are already in the ideal it generates over the 

1  2 
ring of exterior forms in the space  (v ,v ,0.. ,02,0-,-, ,022),  

so that 

the system (3.32)  is closed.  If an integral manifold can be found 

1        2 which satisfies     (3.32)     and on which in addition    dv   . dv    j* 0,     then 

the system is said to be in involution with respect to the  variables 

12 1 v      and    v    .    Clearly if    (3.32)    is in involution with respect to    v 

and    v      then there exist solutions of     (3.21).    The number of such 

. 
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solutions aa well as a criterion for a closed system to be in involution 

is given in §U. 

An important detail in the preceding derivation should be stressed. 

The original differential system, comprising  (3.23) and  (3.2u), was 

not closed, but it might have been closed merely by adding the exterior 

derivatives of these equations to it, giving the system 

(3.33) 

2 12 
f d0    - 0 dv    - 0~dv - 0 

d01  *   l^dv1  *   J202
dv2  * ° 

d0,  . dv1 • d0o .dv2  = 0 

j 1d01 A dv
1 •  J 2d02 A dv

2 • (02 } I  - 0Lj_5 \  )dv1 A dv
2 - 0, 

in which the first two equations might be omitted as before. As it turns 

out, (3.33)  is not in involution, so that it has been necessary to prolong 

it by adding 0,  and 0„o    to it by means of (3.2$). Then the new 

system had to be closed by the addition of the exterior derivatives of 

(3.25); luckily the resulting system is in involution as we shall see later 

on.  It is an open question whether an arbitrary system can be prolonged 

in this fashion into a system in involution with respect to a given set of 

variables. « r 

• The remainder of this section is devoted to replacing the general 
| I ' 

equations  (3.1)  governing the existence of conservation laws by a' 

closed exterior differential system. Since one may solve  (3.1)  for 

U A 0  in terms of some new parameters, Xy say, 

I 
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(3.3U) 

2 

<1^2 v     v   1    „P\ the initial differential system in the variables (0 ,0 ,X..,...,X.u , ...,u ) 

d0X -  ^ X „ jf- UU * - 0 

1-1 
(3.35) 

p 
v 

2" 
^2        <r      ?<•?    1 

4-1 

where   w-''':=      >    £. du-5.    The system    (3.35)    can also be obtained directly 

I 
| from (1.9) without going to the trouble of deriving the corresponding 

linear equations  (3.1).  In fact, write  (1.9)  in the normal form 

(i.i8)     ^""r^i^  = °»       i=i,...,p 

where (T*. =  S ^ . -—r , and suppose there exists a linear 
. ,  ° ox 
.1*1 

combination S X , (j , Ti  - I -,^2  ^    °f the left_hand members of 

i-I 
\ _(1 \ j(2 

(1.18)    which is of the  form   ^    •   U%j .    Then 
dxX bx • 

P /.      . .    ,9 P, 
id1 > -I     I ^02 < **     * 
6x i-a    4 ^x i=1    < * 

since each of these identities  involves differentiation with respect to 

?••• 
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only one  of the  independent variables,    we may replace the derivatives 

"—r    and  o~.     by the corresponding differentials    d0      and  w     to obtain 
&x x 

(3.35). 

Vt'e attempt to  prolong     (3.35)     by adding new variables X^     to it, 

where 
a 

(3.36) dX£      =^p^     , i-l,...,P, 

Denote the  Pfaffian  form on the right-hand side of    (3.36)     by    On  . 

The  introduction of    On      is  convenient for deriving results which are 

independent of the  fact that  it is an integral;   it should be noted in 

particular that  Poincare's theorem,    dd 9o    - 0,     is  always valid,  even 

if nothing is  known about    ©_£ • 

Differentiate     (3.35)    to obtain 

(3.37) £{V*    ">i*   *•**<»£ w1)}     -0,        1-1,2. 

• 

The coefficient of uJ Au)  in (3.37)  is given in terms of the Xj^ 

and the known functions  o ,, . S , , §    in the second term, and bv 
jk* xs -J  ik 

X , » j . •- ^>, i .  in the first term,  i • 1,2.  Hence, since the 
k x  I   \K i 

characteristic directions in X are distinct, by setting the coefficients 

£-i                                  of w)  uJ  equal to zero,  k, X  = l,,,.,p,  one can solve for all those 

3 N 
X       «     for which    k f X    in terms  of the ")£•£ .     Taking these values  for 

X     »,  or,   preferably,  merely considering these values as definitions, 

(3.37) is  identically satisfied and hence  the exterior derivative 

p n 

(3.38) > (dOfAl.^~ ftjAd(jJu<')  * d>JjAd(^u.i)| s 0 

A1 
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of the left-hand side  is identically zero.     (Note that a minus  sign 

appears  in    (3.38)    due to    (3.8).)     In other words,  since the la3t 

two terms of    (3.38)    cancel, using    (3.36)    and the definition of 

Si ,  the expressions 

(3.39) 5     M9/J,Ut* 

i-1 

are in the ideal generated by 

(3.U0)     dXg- 3£}       I-  l,...,p. 

For the converse of Poincare's  theorem turns     (3.35)     into     (3.37), 

and    (3.37)     vanishes  identically, merely being used to define various 

coefficients  in the Of 's.     Note that  the system    (3.Uo)     is not yet 

closed, although    9 o   represents an integral,  since    9«   involves new 

terms which prolong the original system.     In the  prolonged system    0J 

is not an integral. 

?r- Now let 

J, $ (3.U1) d9^ -QJ^AU)**   ±    <T   •^JJJUTAIA) 

§5 

for some uJ»«, TT-_.V depending ontj ,)Cy oand their first differentials, 

i,j,k = l,...,p, where TT   *"r^k1 = °* Without ^et closing (3.U0) by 

i asserting tliat dO n  =0, multiply (3.Ul) by uJ to find that 

I   ' ' 
P 

| C3.U2) \     £ $[ TTXsku*A»\J 

• 

\ lies in the ideal generated by (3oUo)-, since (3• 39) does; 
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hence 

(3.U3) Jliriik* Ji %£ 

But     (3.U3)     gives the  identity 

(3-UU) 
•"JU* 

B6 

Jk/ 
*s 

^Mi 
l{ l\ ^l   3 1 if ?j 

ii ^ 12 si j' ii 

Si^ki-I-'0'  i = 1'2- 

= TT(ijk) 

where IT ( Jl jk)     is  independent of the order of £ jk.     In the special case 

of Chapter  II this simple  result  is  exactly the assertion of Chaptei   II, 

8 2,  that only one   first order relation arises  for each distinct triple 

of indices.     In fact, TT(ijk)     is   just  the left-hand side of    (2.37).     It 

should be  noted,  however,  that  in general  IT is a  linear combination of the 

~*-JlJl as well as %p ,     *•- l,»«.,p,    the special case being the only- 

exception to this rule. 

It is  undoubtedly true  that  for    p >  3    one  can find still further 

identities among the TT ( ^jk).     Thest  identities,  if any, will not be 

investigated here. 

The fact that    ddO«    belongs to the ideal generated by    (3.U0), 

that is 

OM) 

a (uS^tf*) •  \ Z.  v-iJk d Tr„„_ vo\\JJk 

j,k^ 

j,k,  ft 
7     <    M^jk   d ( w^^k>  = °> 

will be recorded here for later use. 

L. • 
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To close     (3.U0)     one must first add to  it the requirement 

d9a    • 0,    which breaks  into several parts  in the notation of    (3.Ul) 

The result  is  that 

TT(£,J,*)  - 0 

(3.U6) /#j,k - l,...,p 

is a closed system provided that    d(uT».Aiu^)    and    dT* ( | jk)    belong 

to the  ideal generated by it.     However,     it is not necessary to look at 

d(ujp pA »*>*)     since 

d(G3 V *VJ*)     *    \   1   <17T 
1   lrii J 9 r->   — 

/JK 
"A<A /- !,...,! 

belongs   to the  ideal generated by the  left-hand members  of    (3.^6), 

thanks to    (3.U5).     Hence    d(uDo,AtO^)     vanishes  if    dTT( i jk)    does 

for all    j,k = 1,...,p. 

Finally,  if    dTT(^jk)    vanishes  then so does  its derivative,  by 

Fbincare's theorem,  since no  prolongation of the system is  involved at 

this  point.     Thus 

^7T(i,j,k)     =0 

d7T(^,j,k)     -0 / j,k - 1,...,P 

(3.U?) 

dX. I 
Qx   =0 

*>u A UJ - 0 

L 



is a closed system in X* ,X., and u*,  /f» l,...,p, all of whose 

solutions are also solutions of (3.1). The main result of this 

chapter is that  (3.U,7) is also always in involution with respect to 

the u *. 

§U.  The theorem of Cartan and Kahler 

The following existence theorem, due to Cartan [ 1 ] and extended 

by Kahler [2 ] to arbitrary exterior differential systems, not only 

gives a criterion for a closed system to be in involution at a given 

point, but also indicates how much Cauchy data  (in the form of 

coefficients of convergent power series in one or more variables about 

the point)  is necessary to determine a unique solution of the system. 

The presentation given here for the case that the system contains no 

forms of degree higher than two is essentially that given in Kahler, 
- 

pp. 5^-55s with only slight changes of notation.  Frobenius' theorem 

and the converse of Poincare's theorem can be obtained as special cases 

l & of this theorem. 

Given p independent Pfaffian forms uJ ,...tuJ       in a certain 

neighborhood in some space of dimension n * r, we consider a system 

i 

! 

L_ 

TTi = 0, i = l,...,r 

(3.U8) /  6 - 0, j - l,...,h 

V X, = 0, k=l,...,m 

of forms TT.)Q.J'X   of degree zero, one, and two respectively, where 
i .1  K 
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the  Jacobian matrix formed by the  gradients  of the  forms of degree zero 

is  of rank    r,    the     p * h    Pfaffian forms   u;   ,••>•, U>   ,  »,,...,©,     are 

linearly independent,  the quadratic  forms  are of the type 

r-     •   >W    J/^W     for some  n?w Pfaffian forms uu ,   « ,  and the coefficients 

Jt-1 

of all of the  forms  ar<? analytic.    We seek a solution of    (3.U8)     on 

which   u>\ ... AuJP / 0. 

Let    q = n -  p - h    and suppose that new independent  Pfaffian 

forms UD_,...,UJ      are chosen in such a way that  UJ   ,„„»fu>r, Q,, ...,9,, 

WJ   ,...,uD       span the co-tangent space of the n-dimensional manifold 

determined by the zero-dsgres forms 

(3.U9) "H"i  
B 0, i = l,...,r. 

Then the  Pfaffian forms   to   *    are linear combinations of 

uJ= ("J1,...,^ P), 0= (0],...,Qh) and u3 = (w,,,.., u> )j since 

only the coefficients of uJ are of interest, and only the manifold 

determined by setting   "TT =  ("H"     ,..., TT    )  • 0,    we may write 

(3.5o) ^ki -    ^   aU Bj   ^moda,»&»'TT) 
J-l 

k = T ,... ,m;       x" l....,p. 

Let CT"  represent the number of linearly independent forms among 

P 

^ UJ , j u., mod u> ,©, TT f      k = 1,...,m, where u, * (u,,...,vS)    is 
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a set of constants chosen in such a way that CT      is a maximum, or, 

preferably,  u,  is a fixed set of indeterminates. Similarly let 

0~. • <J~„ represent the number of linearly independent forms among 
1    d 

P P 

> wJ o u, and  > ^b-f uo mod ^J^J "" » where u« is chosen in such 

S. -1 ^ -i 

a way that  cr      is a maximum,...,    let 0"  +.. .• °~   -,    represent the 

P . 

number of linearly independent  forms among     ^WJ,  n u,,..., 

*-l 

C~.     ui 
^,     kj    p-1,    mod WJ   ©. TT ,    -.vhere u    ,     is chosen in such a way that 

ty    ..     is a maximum.    Finally let  C    = a  -  0"", -... - (j—   ,. 
p-1 P -<- P--L 

One  further definition  is  necessary.    An integral of    (3.U8)     on 

which    ^   i\ . ..Aw>p f 0    is  completely specified once  ^  is written in 

terms of    u0 ,     say, 

P 

(3.5D   u>a- - < *^w^>     J-1*...,<1. 

-f-1 . 

* 
' essentially prolonging (3.U8) by adding the t.« to it. However, the 

*; 8 t . are restricted by the quadratic relations in (3.U8) and so do not 

in general span a space of  pq dimensions. Let M be the dimension of 
I   I j 
j   • the space spanned by  the    t.» . 

! i 
i 

i 

. i 
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The Cartan-Kahler theorem asserts that 

(3.52)      u<   pq - (P-i)o-1 - (P-2)o-2_..._<rp_i 

with equality holding if and only if (3.U8)  is in involution with 

respect to  p variables for which u' A ... AULT / 0.  In the latter case 

the general solution depends on 0~      arbitrary parameters, where 

C~ = n - p - q, on (T  arbitrary analytic functions of a single variable, 

on <T"p arbitrary analytic functions of two variables,..., and on 0~ 

arbitrary analytic functions of p variables. 

This theorem is proved by means of a sequence of Cauchy-Kowalewski 

constructions. Setting 

i'      I      t    k m   =     \    »   u/ one successively constr\icts    "integral elements" 

k=l 

through the  spaces determined by uJ = «..= «<*£ = 0     for    k •» l,...,p. 

It should be  remarked that even though a closed svstera is  in 

involution,   further  prolongation might still lead to a new system in 
m 

|    V 
involution.     In particular,  the singular solutions  of a  system in 

{    ,. involution,  which satisfy additional restrictions  under which the given 
If 

system is no longer  in involution,  can sometimes be obtained as the 

general solutions of a  new prolonged system in involution. 

55- The existence  of conservation laws 

As a simple  illustration the Cartan-Kahler theorem can now easily be applied 

;o the  first example of   £3,  given by 
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d02 - (^^ * /U
202)dv1 - 022dv2  - 0 

(d0u -  f> ldv2)A dv1 - 0 

(d022 -   p2dv1)A dv2 = 0- 

Since there are no  forms of degree  zero,    r • 0.    The variables  occuri-ing 

1      2 
in    (3.32)    are    v  ,  v  , 0      0      0. n,  0 _    so that    n = 6.    A solution is 

1        2   / 
sought on which    dv      dv    f 0,    so    p = 2.    The system    (3.32)    contains 

two independent  Pfaffian forms,  giving    h = 2    and q=n-p-h3!2. 

Clearly we may set   uJ« = d$»», with fyf = U)j  (mod   uJ,Q), X • 1,2; 

thus  0~",   = 2    and   <r*   «= q -  ff".   * 0.     Finally    d0,,     and    d022    are 

12 12 
completely determined by    d0,.   - t,,dv    •   /°-,dv      and    d0?? •   (°?dv   • t??dv , 

where    t,,     and    t?2    are unrestricted by the quadratic members  oi     (3.32), 

giving    M = 2.     Thus equality  holds  in     (3.52)     and the generalsolution 

of    (3.32)    depends  on two parameters,  and two functions of a single variable, 

since    n -  p - q " 2    and  <T"   *» 2. 

More generally, the special case of Chapter II follows exact!v the 

[I 
I same pattern. Again there are no forms of degree zero, "^ -  0, provided 

f S£ 
the  integrability conditions of THEOREM B are satisfied.    Referring to 

(3.U7),  it is clear that  each   wJ«n  contains only one term of interest, 

namely    dX»o , which was defined in    (3.36),  so that we may take 

&l - dXbn   with £>jjQ 5 uJn (mod iO,9),       X m l,.,.,p,    Then exactly as 

before,   n = 3p,    h - p,    q - n - p - h * p,^ - P,  <T*2 -...« CTp - 0, 

since    0"      •..,+ CT     = q, and    M - p.    The equality holds in    (3.52) 
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and so the general solution depends on p parameters and p functions 

of a single variable.  This result might be slightly surprising since 

the existence theorem given in Chapter II indicates that the values of 

the first derivatives of X along the  p characteristic curves determine 

a solution uniquely up to two additive constants which do not occur in 

the present discussion.  However, if on« assigns not the first but the 

second derivatives ~^<ie   along the characteristic curves, the p values 

of the first derivatives at the origin may be taken as the additional 

parameters. 

As a slightly more interesting example consider the special case 

again but suppose that none of the integrability conditions is satisfied. 

Then, since the coefficient of X 6   occurring in "TT ( ^jk)  is non-zero, 

the equations dTT (J_ jk) =0 in (3.U?)  provide a determination of all 

the Xpn   in terms of the ")L a , the determination being unique since  (3.U7) 

is closed. Because the system already contains expressions for dJCc, 

namely d"X-» = 9 ? ,  the quadratic members of (3.U7)  are redundant and 

may be dropped out. When no quadratic terms are present both sides of 

(3.52)  vanish so that the system is automatically in involution.  No 

arbitrary functions may be assigned, since q = 0, and the number of 

arbitrary parameters depends on the equations "TT( ^jk) = 0.  The number 

of these equations is  ( ? ), but there might be considerable linear 

dependence among them^ as suggested on p. 53. However, for p = 3 

there is exactly one relation among the three unknowns so that a 

ill 
!©•'• two-parameter family of conservation laws exists. 

! 

i 
» 
1 

# 

I 
{*;••• 
I 

To  illustrate  the   preceding result consider the system 

- 

1 L 
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f 
! I 

L_ 

y o v 6v 

(3.53)) ^   +   vl^   .0 

£v dv 

(     O01 v1^02 

which satisfies  none of ^he conditions of THEOREM B.     In fact it leads 

to the  first order equation T » o where 

fie\,\    IT     or  2 3^02  A  / 1        2 A    3^02   .   ,  1        2  A    3N fc 02 

(3.5^)     " * 2(v    - v  )=i-j *  (  - v    - v    + v ) ^i-j +  (v    - v    • v ) '"-^ 
^v_ &v ov 

Nevertheless it has two solutions, 

(3.55) 

Ail  1/3   2, 
)D      -   V  (.V  - V ) 

02 - V1 4 V2 • V3' 

% and 

I / dl        1 ,  3   2. , 1 A 2 A 3x 
I j5 «v (v - T ] (v • T • v ) 
I (3.56) 
| / ^2   , 1.2 . , 2,2 . , 3x2 .  1 , 2 ,  3> 

t    = (v )' • (•')« • (V-T * VX (V' 4 V
J) , 

• the general solution being a linear combination of these with constant 

coefficients. 

Intermediate cases, in which some but not all of the integrability 

conditions of THEOREM B are satisfied, can be investigated in exactly the 

same fashion.  In every case, of course, the conservation Laws fall 3hort 

of equivalence to the original partial differential system unless all of 

the integrability conditions are satisfied. 
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Some examples not contained in the special case will be given in 

order to motivate the theorem to follow.  In giving these examples it 

will be convenient to specify the differential forms ^J   ,..., ^   , or 

equivalently, the operators U,,.,,,U , merely by giving their structure 

functions, which wil] be taken as constants satisfying the quadratic 

relations arising from Jacobi's identity,  (1.32).  The fundamental 

1      P theorem of Lie groups insures the existence of w ,...,uu  in an 

appropriate neighborhood. We take  p • 3 and suppose that the ratios 

: \  ? are distinct constants. Further we suppose for simplicity s 
that the structure constants  satisfy a condition which is  just  the opposite 

of that assumed  in Chapter  II,  namely that   J   .,      is  non-zero only when 
JK 

i  j  k are all distinct.     For convenience let  (ijk)     be any even permutation 

of    (123)     and write 

! 
| 

I 
i h 

i 

(3.57) 

and 

(3.58) 

*#    -*1 

-1    il 

J2   32 

X . 
I 

Then differentiating    (3.35)     gives 

(3.59) dX.  - Q± -X ±±olX • 

and further differentiation gives 

L 



lotai 

it 
I i 

! 

-63- 

H *xJ-v *    v^ (3.60) TT-   51Xii*   3J   Xjj*   I**kk 

and 

(3.61) iX>      Au>i - 0, i - 1,2,3 

where 

(3.62) CO..   - d* ..   _ 2  XJ tfk  ( y    ^  • "£ u)k) v ii ii i k 

Now we consider various examples  obtained by substituting these values 

of    ©.,10..,    and 1<   into the closed system 
i'       ii' 

Tf= 0 

dTT = o 
(3.U7) 

d fc\   - ©.   =0 
1 1 

uJiJL Atu
1 = 0, 

for several choices  of   6    , Jf   , 5   .     The special case    t~   -  $     -   o J = 0 

! t is omitted here. 
*''• - vl 2 3 "" Example  I;       Suppose    a     =1,    tf     *   ft     =0.    Then W) is known in 

j V terms of the eight variables    u  ,u ,u  , F-,, TLJ ^3> ^oo    ^"33    since 
I _ 
! (3.60)    implies    X,,   =0.    Hence there are only two quadratic relations 

in    (3.6l).     Furthermore    q = n-p-h = 8-3-3"=2     so that since 

0""-     is clearly    2,   0~?  =   V~   = 0.    Since the components  of    ^"K?? 
2 3 

and    d*Y,,    in the directions   UJ      and   U)      respectively may be arbitrarily 

prescribed,    M = 2.     Hence    M = pq -  (p~l)0"\  • 2    so that the system is 

in involution.     Furthermore,  three  parameters and two analytic functions 

« 
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of a single  variable determine the corresponding conservation laws 

since n -  p - q • 3 and  a~    » 2.     It  is  interesting to note that 

d X ,   = 0,  so that    X ,     is one  of the   parameters.     A more careful 

exflTrdnation of  tht  Cartan-Kahler theorem would  probably show that the 

values of    X ~    and    X -,    at a  fixed  point are the  remaining  parameters, 

giving rise to an equivalent system of conservation laws. 

12 1 
Example  II;     Suppose    i     =    »     =* 1,    t     - 0.     Here we note that 

^n » d X n    and   ta„2 = d X 2?    so that dTf    - 0 implies   "3       •   £>     = o. 

Since the quadratic  relations  show that   UJ-,~I     and   ^tf lie  in different 

directions  in the co-tangent  space this  means   ^-,->   =     ^„„ • 0,   leaving 

only one quadratic  relation,   u->     . w    » 0.     As before  there are eight 

l     2     3    —   
variables, which may be taken as    u  ,u  ,u   , X, , 5t?> ^T> *??> *"W    -» « 

to the relation   TT - 0.     In a fashion similar to the  first example one 

computes    M = q »   0~..   ~ 1, where  it should be noted that the additional 

Pfaffian relation    dTT    =0    gives    h = k    rather than    h - 3.     Thus 

U = pq -  (p~l)G~"    = 1,  so that the system is  in involution.    One may 

prescribe  three arbitrary parameters  and one analytic  functions  of a 

single variable  in order to determine  the solution, since    n - p - q = 3 

and  ff~.   * 1. 

Example  III;     Suppose   3"     •   %     =0-1.     In this  case 

&      . d JL       _ 2( JT.  «**J • T Wk)      according to     (3 = 62),  for 
li li j k      " & J' 

ifr i   = 1,2,3,    so  that the  Pfaffian equation    d"fT    = 0    becomes 
if 

(u3u • w22 •  CD33 )  * U( X^1 • .X^W2 •   jt.uP )  = o.    Since   fi±± 

is  in the direction of wJ       this breaks  into three   Pfaffian relations, 

. 
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namely Co       • U X ,W =0,  i = 1,2,3.  Thus all the u3,.  are known, 

and the quadratic relations are merely redundant.  Note that although 

six Pfaffian forms are involved in the system itself only five of them 

are independent since the relation d7T =0 is merely the derivative 

of the definition of X--,-,, say, which is not a prolongation.  Thus 

clearly q = n-p-h = 8-3-5 = 0 and M • 0~"  • 0 so that the 

system is in involution and is completely determined by five parameters 

since  n - p - q = 5- 

In every example so far the relations m = M = T"_ • q and 

(T~. = ...= Q—    -  0 have been satisfied, where m is the number of 2        p > 

independent quadratic relations, so that the condition 

M = pq - (p-1) 0~.-...- o~~ T  has always been satisfied by virtue 
X p—x 

of m = pm - (p-l)m.  It is clear that 0"  •» m always holds since 

| each independent ^0}   contains exactly one term dX-»« independent of 

1      p ,"*i 
j the Pfaffian forms  uJ ,., „, ut) , 0..,.,. ,Q,  and the other w^. For the 

i 
I same reason 6~„  = ... = o  , = 0.  Furthermore M = m always holds 

(since the component of dX-.  in every direction except wJ  is determined 

for each term occurring in the m independent quadratic relations; that 

is, in the language of 6U, there are m independent parameters tjj . 

Finally, to show that q = m in every case, suppose the opposite, that 

is,  q >  m since q < m is impossible by the Cartan-Kahler inequality 

(3.52).  In this case, since q -  &"", • ... * <T       and (Tl * ... * ff"     , = m 

! i 

k* 

one could prescribe a~      arbitrary analytic functions of p variables 
IT 

in determining the  conservation laws,  o~"    > 0.     This means that    0      for 

i m- example    could be completely specified in a neighborhood of    U, which is 

! 
I 

_^_ „_. 

> •* * 
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clearly impossible because    0      satisfies several second order equations. 

Thus  the following important result is clear. 

THEOREM Ds       The system 

T(i,J,k) - o 

dTT(^,j,k)   = 0 

(  }.:i7) J JtJ,k   «=   1,...,P 

dXi   ~   "1      =   0 

is always in involution. 

The importance of this result is that it gives a perfectly definite 

criterion for establishing the existence of conservation laws. One merely 

needs to compute 0~"  and 0~.  in order to find how arbitrary the conservation 
C X 

i laws are, with no further prolongation necessary. 

(When p = 3 THEOREM D leads to a very strong result since there is at 

& — most one finite relation, namely TT= (,.  There are th«fl at least eight 

i 

! 

variables,    n - o,    so that    n •- p " 5$  unless some of the variables 

.   j'X'pp,     "i"i    do no^ appe31";     in any event    n -  p = 2.    But, according 

to the  preceding theorem,  0".   " q    so that <3~    - h.     Hence 

<T~      * °""    « n - p * 2,    which implies 

& 3 

THEOREM Es  For p » 3 any system of the form 

r-i 
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satisfying the conditions  of Chapter I,   83,  contains at least a 

two-parameter family of conservation laws. 

B6.       Several independent variables 

The restrictions  of Chapter I,    §3,  that the  original system should 

contain only two independent variables,  that it should be well-determined 

with distinct  characteristic roots, and that  its  coefficients should be 

independent of    x = jx |,  have been very useful,  since they permitted the 

introduction of the normal   form of Chapter I,   § U.    Without this normal 

form the method of Chapter  II would have been impossible.     However,   it is 

possible to use the methods of the  present chapter in a way which is 

completely independent of a normal form so  that the  preceding restrictions 

become superfluous.     Here we obtain an exterior differential system whose 

solutions  correspond to conservation laws contained in the original system 

(1.1), with no restrictions whatsoever except that of analyticity, which is 
I 

required for the Cartan-Kahler theorem.    No attempt will be made to decide 

when the resulting exterior differential system is  in involution;   in order 
i * 1 to do this it would again be wise to introduce some kind of normal form. 

System (l.l)  is repeated here for convenience as 
\ 

n'P \   j 
(3.63) £•«*. fd-\ - 0, k = l,...,m. 

i 

! 

• 

L  «,!..   .1  

6x 

, Temporarily we assume  that o<.  .      is an analytic function of    u • /uJr 
2     £ *J . 

alone;  this restriction will be removed presently. 
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Suppose that there exist functions X.,    such that the equation 

n,p,m 

(3.6U) X.^H-o 
i,5>l 

k  *  ox1 

has  the  form 

(3.65) f   \£*0, 

that  is, 

(3.66) 

Then clearly 

n,p .   • 

<     &£ StsJ = 0. 
. >    6uj Ox1 
1

 J 0    •*• 

(3.67) d(^ &r   duJ)    - dd01 = 0,      i-l,...,n 

by Poincare's theorem, so that the necessary and sufficient condition 

for    (3.6U)     to be a conservation law is that 

p,m 

(3.68) d(    jT X ^^ duj )   =0,      i - l,...,n, 

J,K=1 

the sufficiency following by the  converse  of Boincare's  theorem.    Thus 

the existence of conservation laws  is reduced to the  problem of 

prolonging     (3*6R)     to a closed system in involution. 

Now let us consider an inhomogcneous  system 

n,p 

(3.69) kito       . ^.0) k=l,...,m, 
<       ^   ox1 

i,J=l 
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where °C .  and oc  are analytic ^unctions of x • (x \  as well as u. 

If there exist functions X v such that 

m n,P,m 1 

=<k - o 

has the form of a conservation law (3.65), which in this case becomes 

r 

(3. 71)     
n<   \±. \d •  < ^i 
i<i ^ ^   A -1 

then clearly 

(3.72) d {< yt ^ * K dx1) 4 u hx± 0,       i = 1,...,n 

U- 
t 

if" 
! 
ir 

that is, 

(3.73) 

p,m 

d (     £ Xk-< k± <*uJ • "^ cbc1 )  - 0,      i - l,...,n 

j>k=l 

is a necessary and sufficient condition for the existence of a conservation 

law, where 

n      m 

(3.7b) %+t-   ^Xkc<k. 
i-l    k=l 
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